Pre-class Warm-up!!!

True or False?
The matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ has 3 eigenvectors, no two of which are scalar multiples of each other.
a. True
b. False

It has up to scaler mun triple only the e-vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ with e-values 2 and 3 ,

Do you remember last Tune we did a lot with the matux $\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$? It hal eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$ with eigenvalues $7,-1$.
6.2 Diagonalization of matrices

New vocabulary:

- diagonalize, diagonalizable, similar

We learn:

- the connection between eigenvalues, eigenvectors and diagonalization
- how to diagonalize a matrix (when it is diagonalizable).
- Some theorems: a criterion for diagonalizability; independence of eigenvectors when eigenvalues are distinct; distinct eigenvalues implies diagonalizable.

What we don't really learn:

- why we would want to diagonalize matrices

Definition. Square matrices A and B are similar if there is an inveriblematix P so that

$$
\beta=P^{-1} A P
$$

A square matrix A is diagonalizable if it is simitar to a chagonal matix. So:

$$
D=P^{-1} A P \text { is diagonal for }
$$

some invertible P

Definition. Square matrices A and B are similar if there is an invertible $n \times n$ matrix P so that $P \wedge\{-1\} A P=B$

A square matrix A is diagonalizable if it is similar to a diagonal matrix.

Example: $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$
Try the matrix $P=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ so $P \wedge\{-1\}=\frac{1}{2}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Calculate

$$
\begin{aligned}
& P^{-1} A P=\frac{c}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
7 & -1 \\
7 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
14 & 0 \\
0 & \sim 2
\end{array}\right]=\left[\begin{array}{cc}
7 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

is diagonal.

Wow!! The columns of P are The e-vectors of A and the diagonal euthes of $\left[\begin{array}{cc}7 & 0 \\ 0 & -1\end{array}\right]$ are the corresponding e-values.

Theorem. Let A, P, D be $n \times n$ matrices with P invertible and D diagonal.
Then $P \wedge\{-1\} A P=D$ if and only if the columns of P are eigenvectors for A with eigenvalues the diagonal entries in D.

Proof. $\quad P^{-1} A P=D \Leftrightarrow A P=P D$
Write the columns of P as v_{1}, \ldots, v_{n},

$$
P=\left[\begin{array}{l|l|l|l}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right] \text {. Write } D=\left[\begin{array}{ccc}
\lambda_{1} & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right]
$$

$A P=P D$ means: for each $i, A V_{i}=i^{\text {th }} L$ of of $A P$

$$
\approx \lambda_{i} V_{L}=i^{\text {th }} \text { column of } P D
$$

$\operatorname{eg} \cdot\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}7 & -1 \\ 7 & 1\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}7 \\ -1\end{array}\right]=\left[\begin{array}{cc}7 & -1 \\ 7 & 1\end{array}\right]$
\Leftrightarrow for each $i, A v_{i}=\lambda_{i} v_{i}$
\Leftrightarrow for each i, r_{i} is an e-vector of A with e-value λ_{i}

Theorem 1. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof. A has n linearly in dependent e-vectars
\Leftrightarrow there is an invertible matrix P with columns that are e-vectors of A
\Leftrightarrow there is invertible P with $P^{-1} A P=D$ is diagonal.
$\Leftrightarrow A$ is dragonalizable.

Example. The matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable.
Proof. We show A does not have 2 inclependent e-vectors. Find e-values: characteristic poly: $\operatorname{det}\left[\begin{array}{cc}1-\lambda & 1 \\ 0 & 1-\lambda\end{array}\right]$ $=(1-\lambda)^{2}$ Roots: 1 (twice).
To find e-vecturs: find Null ($A-\lambda I)$ $=\operatorname{Nall}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
I free variable. 10 is a basis for the nullspace. There is one e-vector ufo to scalar multiple. A is not diaganaliate
Also $\left[\begin{array}{ll}1 & 0 \\ 1\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}2 & 17 \\ 0 & 2\end{array}\right]$ are not diagonalizable.

Like 6.2 questions 1-28
Find whether or not the following matrices are diagonalizable. If so, find P so that $P \wedge\{-1\} A P=D$ is diagonal.

1. $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$
2. $A=\left[\begin{array}{rr}-5 & -12 \\ 3 & 7\end{array}\right]$

Solution: char poly $(1-\lambda)(3-\lambda)$. Two e-values 1: find nullspace of $A-I=\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right]$.
It hae basis $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
3. $\operatorname{NaLL}\left(\begin{array}{cc}-2 & 2 \\ 0 & 0\end{array}\right]$ hal basis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Take $P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, Then $P^{-1} A P=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$

Like 6.2 questions 1-28
Find whether or not the following matrices are diagonalizable. If so, find P so that $P \wedge\{-1\} A P=D$ is diagonal.

1. $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$
2. $A=\left[\begin{array}{rr}-5 & -12 \\ 3 & 7\end{array}\right]$

Two more matrices:
3. $A=\left[\begin{array}{rr}-5 & -14 \\ 3 & 8\end{array}\right]$
4. $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right]$

Solution 2. Char. poly $=\operatorname{det}\left[\begin{array}{ccc}-5-\lambda & -12 \\ 3 & 7-\lambda\end{array}\right]$

$$
=\lambda^{2}+5 \lambda-7 \lambda-35+36=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}
$$

$\lambda=L$ is the only root, twice.
Find e-vectars: $\operatorname{Null} A-I=\operatorname{Null}\left[\begin{array}{cc}-6 & -12 \\ 3 & 6\end{array}\right]$
Echelon farm $\left[\begin{array}{cc}-6 & -12 \\ 0 & 8\end{array}\right]$. Basis for nulssace
$\left[\begin{array}{c}2 \\ -1\end{array}\right]$. There is only on e-vector us to scalar multiple. A is not diogonaliadel

Question: How many distinct eigenvalues does matrix 4. have? If you get to it: is it diagonalizable?
a. 0
b. 1
c. 2

Theorem 2. If A has eigenvectors $v _1, \ldots$ v_k associated to distinct eigenvalues, then $\mathrm{v} _1, \ldots, \mathrm{v} _k$ are independent.

Proof. Let the e-values be $\lambda_{1}, \ldots, \lambda_{k}$ so $A V_{i}=\lambda_{i} v_{i}$ for each i,
suppose v_{i}, \ldots, v_{k} were dependent
Let $c_{1} v_{1}+\cdots+c_{k} v_{k}=0$ be a non-
zero dependence relation, Reorder the v_{i} and let $c_{1} v_{1}+\ldots+c_{r} v_{r}$ be a shortest such relation. Apply the matrix $A-\lambda_{r} I$.

$$
\begin{aligned}
& \left(A-\lambda_{r} I\right) v_{i}=A v_{L}-\lambda_{r} v_{i}=\lambda_{L} v_{L}-\lambda_{r} v_{i} \\
& \\
& =0 \text { if } L=r \\
& \neq 0 \text { if } L \neq r
\end{aligned}
$$

We get a shorter relation if $r>1$ This is a contradiction. The v_{1}, \ldots, v_{k} are is dependent.

Theorem 3. If the $n \times n$ matrix A has n distinct eigenvalues, it is diagonalizable.

Page 354 Question 32

Show that if $\mathrm{n} \times \mathrm{n}$ matrices A and B are similar, then they have the same characteristic equation, and therefore have the same eigenvalues.

Page 354 Question 29
Prove: if the matrices A and B are similar and the matrices B and C are similar, then the matrices A and C are similar.

